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Today’s plan

Morning session

1 Intro to Generalized Additive Models (GAMs)

2 Smooth effect types & Big Data methods

Afternoon session
1 Beyond mean modelling: GAMLSS models

2 Distribution-free modelling: Quantile GAMs
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Intro to Generalized Additive Models (GAMs)

Structure:
1 What is an additive model?

2 Introducing smooth effects

3 Introducing random effects

4 Diagnostics and model selection tools

5 GAM modelling using mgcv and mgcViz

Matteo Fasiolo (University of Bristol, UK) Additive modelling June 27, 2018 3 / 30



Structure of the talk

Structure:
1 What is an additive model?

2 Introducing smooth effects

3 Introducing random effects

4 Diagnostics and model selection tools

5 GAM modelling using mgcv and mgcViz
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What is an additive model

Regression setting:

y is our response or dependent variable

x is a vector of covariates or independent variables

In distributional regression we want a good model for Dist(y |x).

Model is Distm{y |θ1(x), . . . , θq(x)}, where θ1(x), . . . , θq(x) are param.

In a Gaussian model, the mean depends on the covariates

y |x ∼ N
{
y |µ = θ(x), σ2)

}
,

where µ = E(y |x) and σ2 = Var(y).
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What is an additive model
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Figure : Gaussian model with variable mean.
In mgcv: gam(y~s(x), family=gaussian).
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What is an additive model

Gaussian additive model:

y |x ∼ N(y |µ(x), σ2)

where µ(x) = E(y |x) =
∑m

j=1 fj(x).

fj ’s can be fixed, random or smooth effects with coefficients β.

β̂ is the maximizer of penalized log-likelihood

β̂ = argmax
β

{
Ly (β)− Pen(β)

}
.

where:

Ly (β) =
∑

i log p(yi |β) is log-likelihood

Pen(β) penalizes the complexity of the fj ’s
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What is an additive model

Generalized additive model (GAM) (Hastie and Tibshirani, 1990):

y |x ∼ Distr{y |θ1 = µ(x), θ2, . . . , θp},

where

E(y |x) = µ(x) = g−1
{ m∑

j=1

fj(x)
}

,

and g is the link function.

Poisson GAM:

y |x ∼ Pois{y |µ(x)}

E(y |x) = Var(y |x) = exp
{
∑m

j=1 fj(x)
}

g = log assures µ(x) > 0

Here E(y |x) and Var(y |x) is implied by model...
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What is an additive model

... or we can have extra parameters for scale and shape.

Scaled Student’s t GAM:

y |x ∼ ScaledStud{y |µ(x), σ, ν}

E(y |x) = µ(x) =
∑m

j=1 fj(x)

σ is scale parameter

ν is shape parameter (degrees of freedom)

Var(y |x) = σ2 ν

ν−2

In the afternoon will see models with multiple linear predictors, eg:

y |x ∼ N{y |µ(x), σ(x)}
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Structure of the talk
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Introducing smooth effects

Consider additive model

E(y |x) = µ(x) = g−1
{

f1(x) + f2(x) + f3(x)
}

,

where

f1(x) = β0 + β1x1 + β2x
2
1

f2(x) =

{
0 if x2 = FALSE
β4 if x2 = TRUE

f3(x) = f3(x3) is a non-linear smooth function.

Smooth effects built using spine bases

f3(x3) =
r∑

k=1

βkbk(x3)

where βk are unknown coeff and bk(x3) are known spline basis functions.
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Introducing smooth effects

Example 1: B-splines

Figure : B-spline basis (left) and smooth (right).
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Introducing smooth effects

Example 2: Thin plate regression splines (TPRS)

Figure : Rank 7 TPRS basis. Image from Wood (2006).
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Introducing smooth effects

Figure : Rank 17 2D TPRS basis. Courtesy of Simon Wood.
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Introducing smooth effects

In general

f (x) =

r∑

k=1

βkbk(x).

To determine complexity of f (x):

the basis rank r is large enough for sufficient flexibility

a complexity penalty on β controls the wiggliness of the effects

In first morning practical we’ll see only 1D effects.

In mgcv:

gam(y ~ 1 + x0 + s(x1, bs = "tp", k = 15), ...)
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Structure of the talk
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Introducing random effects

Suppose we have data on bone mineral density (bmd) as a function of age.

We have m subjects and n data pairs per subject

subj 1: {bmd11, age11}, . . . , {bmdn1, agen1}

subj j: {bmd1j , age1j}, . . . , {bmdnj , agenj}

subj m: {bmd1m, age1m}, . . . , {bmdnm, agenm}

Standard linear model ignores individual differences

E(bmd |ageij) = µ(ageij ) = α+ βageij .

We can include random intercept per subject

µ(ageij) = α+ βageij + aj ,

where a = {a1, . . . , am} ∼ N(0,Σ).
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Introducing random effects
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We can also include random slopes

µ(ageij) = α+ (β + bj)ageij + aj ,

where a ∼ N(0,Σa) and b ∼ N(0,Σb).
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Introducing random effects

In mgcv random effect are specified as:

gam(bmd ~ 1 + s(subject, bs = "re") +

age + s(age, subject, bs = "re"), ...)

In simplest case Σa = γaI and Σb = γbI, that is

Σa =








γa 0 0 . . . 0
0 γa 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . γa








Variances γa and γb must be estimated (later I’ll explain how).
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Structure of the talk

Structure:
1 What is an additive model?

2 Introducing smooth effects

3 Introducing random effects

4 Diagnostics and model selection tools

5 GAM modelling using mgcv and mgcViz

Matteo Fasiolo (University of Bristol, UK) Additive modelling June 27, 2018 20 / 30



Diagnostics and model selection tools

In first hands-on session we’ll use few basic diagnostics.
QQ-plots
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Diagnostics and model selection tools

Useful for choosing model Distm(y |x) (e.g. Poisson vs Neg. Binom.)

Less useful for finding omitted variables and non-linearities.
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Diagnostics and model selection tools

Conditional residuals checks are more helpful here.
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Diagnostics and model selection tools

Recall structure of smooth effects:

f (x) =
k∑

j=1

βjbj(x).

where β shrunk toward zero by smoothness penalty.

Effective number of parameters we are using is < k .

Approximation is Effective Degrees of Freedom (EDF) < k .

By default k = 10 but this is arbitrary.

Exact choice of k not important, but it must not be too low.
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Diagnostics and model selection tools

Checking whether k is too low:

1 look at conditional residuals checks

2 look at output of check(fit):

## k’ edf k-index p-value

## s(wM) 9.00 8.60 0.91 <2e-16 ***

## s(wM_s95) 9.00 8.13 1.02 0.76

## s(Posan) 8.00 2.66 1.04 0.97

3 increase k and see if a model selection criterion improves
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Diagnostics and model selection tools

Model selection

General criterion is approximate Akaike Information Criterion (AIC):

AIC = −2 log p(y|β̂)
︸ ︷︷ ︸

goodness of fit

+ 2τ
︸︷︷︸

model complexity

where τ is EDF.

If AICm1 < AICm2 choose model 1.

To select which effects to include we can also look at p-values:

summary(fit)

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 267.2004 75.4197 3.543 0.000405 ***

## Fl 6.2854 1.0457 6.010 2.20e-09 ***

## loc2 79.8459 80.4130 0.993 0.320858

## loc3 -71.2728 86.1725 -0.827 0.408284
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Structure of the talk
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GAMs in mgcv and mgcViz

mgcv is the recommended R package for fitting GAMs.

Today we’ll work with mgcViz’s interface.

mgcViz extends mgcv’s tools for:

plotting the estimated effects

doing visual model checking

But most of the computation is done by mgcv under the hood.
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Further reading
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