Generalized additive models

Matteo Fasiolo (University of Bristol, UK)

matteo.fasiolo@bristol.ac.uk

June 27, 2018

Matteo Fasiolo (University of Bristol, UK)

Morning session

- Intro to Generalized Additive Models (GAMs)
- Smooth effect types & Big Data methods

Afternoon session

- Beyond mean modelling: GAMLSS models
- Oistribution-free modelling: Quantile GAMs

Intro to Generalized Additive Models (GAMs)

Structure:

- What is an additive model?
- Introducing smooth effects
- Introducing random effects
- Oiagnostics and model selection tools
- GAM modelling using mgcv and mgcViz

Structure:

What is an additive model?

- Introducing smooth effects
- Introducing random effects
- Oiagnostics and model selection tools
- GAM modelling using mgcv and mgcViz

Regression setting:

- y is our response or dependent variable
- x is a vector of covariates or independent variables

In distributional regression we want a good model for $Dist(y|\mathbf{x})$.

Model is $\text{Dist}_m\{y|\theta_1(\mathbf{x}),\ldots,\theta_q(\mathbf{x})\}$, where $\theta_1(\mathbf{x}),\ldots,\theta_q(\mathbf{x})$ are param.

In a Gaussian model, the mean depends on the covariates

$$y|\mathbf{x} \sim N\{y|\mu = \theta(\mathbf{x}), \sigma^2\},\$$

where $\mu = \mathbb{E}(y|\mathbf{x})$ and $\sigma^2 = Var(y)$.

What is an additive model

Figure : Gaussian model with variable mean. In mgcv: gam(y~s(x), family=gaussian).

Matteo Fasiolo (University of Bristol, UK)

Additive modelling

What is an additive model

Gaussian additive model:

$$y|\mathbf{x} \sim N(y|\mu(\mathbf{x}), \sigma^2)$$

where $\mu(\mathbf{x}) = \mathbb{E}(y|\mathbf{x}) = \sum_{j=1}^{m} f_j(\mathbf{x})$.

 f_j 's can be fixed, random or smooth effects with coefficients β .

 $\hat{oldsymbol{eta}}$ is the maximizer of $oldsymbol{penalized}$ log-likelihood

$$\hat{oldsymbol{eta}} = rgmax_{oldsymbol{eta}} ig\{ L_y(oldsymbol{eta}) - {\sf Pen}(oldsymbol{eta}) ig\}.$$

where:

•
$$L_y(\beta) = \sum_i \log p(y_i|\beta)$$
 is log-likelihood

• $Pen(\beta)$ penalizes the complexity of the f_j 's

What is an additive model

Generalized additive model (GAM) (Hastie and Tibshirani, 1990):

$$y | \mathbf{x} \sim \mathsf{Distr}\{y | \theta_1 = \mu(\mathbf{x}), \theta_2, \dots, \theta_p\},$$

where

$$\mathbb{E}(y|\mathbf{x}) = \mu(\mathbf{x}) = g^{-1} \Big\{ \sum_{j=1}^m f_j(\mathbf{x}) \Big\},\,$$

and g is the link function.

Poisson GAM:

•
$$y | \mathbf{x} \sim \text{Pois}\{y | \mu(\mathbf{x})\}$$

• $\mathbb{E}(y | \mathbf{x}) = \text{Var}(y | \mathbf{x}) = \exp\left\{\sum_{j=1}^{m} f_j(\mathbf{x})\right\}$
• $g = \log \text{ assures } \mu(\mathbf{x}) > 0$

Here $\mathbb{E}(y|\mathbf{x})$ and $Var(y|\mathbf{x})$ is implied by model...

... or we can have extra parameters for scale and shape.

Scaled Student's t GAM:

• $y|\mathbf{x} \sim \text{ScaledStud}\{y|\mu(\mathbf{x}), \sigma, \nu\}$

•
$$\mathbb{E}(y|\mathbf{x}) = \mu(\mathbf{x}) = \sum_{j=1}^{m} f_j(\mathbf{x})$$

- σ is scale parameter
- ν is shape parameter (degrees of freedom)

• Var
$$(y|\mathbf{x}) = \sigma^2 \frac{\nu}{\nu-2}$$

In the afternoon will see models with multiple linear predictors, eg:

•
$$y|\mathbf{x} \sim N\{y|\mu(\mathbf{x}), \sigma(\mathbf{x})\}$$

Structure:

- What is an additive model?
- Introducing smooth effects
- Introducing random effects
- Oiagnostics and model selection tools
- GAM modelling using mgcv and mgcViz

Consider additive model

$$\mathbb{E}(y|\mathbf{x})=\mu(\mathbf{x})=g^{-1}\Big\{f_1(\mathbf{x})+f_2(\mathbf{x})+f_3(\mathbf{x})\Big\},$$

where

•
$$f_1(\mathbf{x}) = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2$$

• $f_2(\mathbf{x}) = \begin{cases} 0 & \text{if } x_2 = \text{FALSE} \\ \beta_4 & \text{if } x_2 = \text{TRUE} \end{cases}$
• $f_3(\mathbf{x}) = f_3(x_3)$ is a non-linear smooth function.

Smooth effects built using spine bases

$$f_3(x_3) = \sum_{k=1}^r \beta_k b_k(x_3)$$

where β_k are unknown coeff and $b_k(x_3)$ are known spline basis functions.

Example 1: B-splines

Figure : B-spline basis (left) and smooth (right).

Example 2: Thin plate regression splines (TPRS)

Figure : Rank 7 TPRS basis. Image from Wood (2006).

Figure : Rank 17 2D TPRS basis. Courtesy of Simon Wood.

Matteo Fasiolo (University of Bristol, UK)

Additive modelling

In general

$$f(\mathbf{x}) = \sum_{k=1}^r \beta_k b_k(\mathbf{x}).$$

To determine complexity of $f(\mathbf{x})$:

- the basis rank r is large enough for sufficient flexibility
- ullet a complexity penalty on eta controls the wiggliness of the effects

In first morning practical we'll see only 1D effects.

In mgcv:

gam(y ~ 1 + x0 + s(x1, bs = "tp", k = 15), ...)

Structure:

- What is an additive model?
- Introducing smooth effects
- Introducing random effects
- Oiagnostics and model selection tools
- GAM modelling using mgcv and mgcViz

Suppose we have data on bone mineral density (bmd) as a function of *age*. We have *m* subjects and *n* data pairs per subject

- subj 1: $\{bmd_{11}, age_{11}\}, \dots, \{bmd_{n1}, age_{n1}\}$
- subj j: $\{bmd_{1j}, age_{1j}\}, \ldots, \{bmd_{nj}, age_{nj}\}$
- subj m: $\{bmd_{1m}, age_{1m}\}, \dots, \{bmd_{nm}, age_{nm}\}$

Standard linear model ignores individual differences

$$\mathbb{E}(\textit{bmd}|\textit{age}_{ij}) = \mu(\textit{age}_{ij}) = \alpha + \beta \textit{age}_{ij}.$$

We can include random intercept per subject

$$\mu(age_{ij}) = \alpha + \beta age_{ij} + a_j,$$

where $\mathbf{a} = \{a_1, \dots, a_m\} \sim N(\mathbf{0}, \boldsymbol{\Sigma}).$

Introducing random effects

We can also include random slopes

$$\mu(age_{ij}) = \alpha + (\beta + b_j)age_{ij} + a_j,$$

where $\mathbf{a} \sim N(\mathbf{0}, \Sigma_{\mathbf{a}})$ and $\mathbf{b} \sim N(\mathbf{0}, \Sigma_{\mathbf{b}})$.

Matteo Fasiolo (University of Bristol, UK)

Introducing random effects

In mgcv random effect are specified as:

In simplest case $\Sigma_{\mathbf{a}}=\gamma_{\mathbf{a}}\mathbf{I}$ and $\Sigma_{\mathbf{b}}=\gamma_{\mathbf{b}}\mathbf{I},$ that is

$$\boldsymbol{\Sigma}_{\mathbf{a}} = \begin{bmatrix} \gamma_{\mathbf{a}} & 0 & 0 & \dots & 0 \\ 0 & \gamma_{\mathbf{a}} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \gamma_{\mathbf{a}} \end{bmatrix}$$

Variances γ_{a} and γ_{b} must be estimated (later I'll explain how).

Structure:

- What is an additive model?
- Introducing smooth effects
- Introducing random effects
- Diagnostics and model selection tools
- GAM modelling using mgcv and mgcViz

Diagnostics and model selection tools

In first hands-on session we'll use few basic diagnostics. $\ensuremath{\textbf{QQ-plots}}$

Diagnostics and model selection tools

Useful for choosing model $\text{Dist}_m(y|\mathbf{x})$ (e.g. Poisson vs Neg. Binom.) Less useful for finding omitted variables and non-linearities.

Conditional residuals checks are more helpful here.

Diagnostics and model selection tools

Recall structure of smooth effects:

$$f(\mathbf{x}) = \sum_{j=1}^k \beta_j b_j(\mathbf{x}).$$

where β shrunk toward zero by smoothness penalty.

Effective number of parameters we are using is < k.

Approximation is **Effective Degrees of Freedom** (EDF) < k.

By default k = 10 but this is arbitrary.

Exact choice of k not important, but it must not be too low.

Checking whether k is too low:

- Iook at conditional residuals checks
- look at output of check(fit):

##		k'	edf	k-index	p-value	
##	s(wM)	9.00	8.60	0.91	<2e-16	***
##	s(wM_s95)	9.00	8.13	1.02	0.76	
##	s(Posan)	8.00	2.66	1.04	0.97	

(a) increase *k* and see if a **model selection criterion** improves

Diagnostics and model selection tools

Model selection

General criterion is approximate Akaike Information Criterion (AIC):

where τ is EDF.

If $AIC_{m1} < AIC_{m2}$ choose model 1.

To select which effects to include we can also look at p-values:

<pre>summary(fit)</pre>												
##	Estimate	Std. Error	t value	Pr(> t)								
<pre>## (Intercept)</pre>	267.2004	75.4197	3.543	0.000405	***							
## Fl	6.2854	1.0457	6.010	2.20e-09	***							
## loc2	79.8459	80.4130	0.993	0.320858								
## loc3	-71.2728	86.1725	-0.827	0.408284								

Structure:

- What is an additive model?
- Introducing smooth effects
- Introducing random effects
- Oiagnostics and model selection tools
- **GAM modelling using mgcv and mgcViz**

 $\tt mgcv$ is the recommended R package for fitting GAMs.

Today we'll work with mgcViz's interface.

mgcViz extends mgcv's tools for:

- plotting the estimated effects
- doing visual model checking

But most of the computation is done by mgcv under the hood.

Further reading

Matteo Fasiolo (University of Bristol, UK)

Additive modelling

- Hastie, T. and R. Tibshirani (1990). *Generalized Additive Models*, Volume 43. CRC Press.
- Wood, S. (2006). Generalized additive models: an introduction with R. CRC press.